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Transient heat transfer from a continuous moving flat surface with varying wall temperature 
is studied. Numerical results are presented for the transient temperature profiles and heat 
transfer rates from the wall for Prandtl numbers varying from 0.01 to 1000. Asymptotic 
solutions for steady state heat transfer rates for large Prandtl number are also presented. 
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I n t r o d u c t i o n  

The study of  heat transfer or mass transfer to and from a 
continuous fiat surface moving at high speed is of considerable 
practical interest. Such systems are used in the fabrication of 
sheet glass, steel plates, paper drying, electrotinning of steel 
sheets and copper wire, hot rolling, hot extrusion, cold extrusion 
and continuous casting. Sakiadis 1-3 was the first to study this 
class of boundary layer problem, where a numerical solution 
was obtained for two-dimensional flow induced by a long 
moving plate or cylinder using similarity transformation. 
Experimental investigations of the flow field were made by Tsou 
et al. 4 and Griffith. s Numerical solutions of the steady-state 
thermal boundary layers on the continuous fiat surface have 
been obtained by Tsou et al., 4 Rhodes and Kaminer, 6 Erickson 
etal . ,  7 and by Rotte and Book, s Bourne and Elliston, 9 and 
Karmis and Pechoc ~° in case of cylindrical surfaces. In these 
works the thickness of the plate or material was considered to 
be negligibly small as compared to the distance along the 
surface. Griffin and Throne 11 have reported an experimental 
study of heat transfer from a continuously moving belt in air. 
Their results were in agreement with the theoretical results of 
Erickson etal .  7 

However, in cases such as in continuous casting, the thickness 
of the emerging plate is finite; hence, one has to consider the 
conduction within the plate. Karwe and Jaluria ~2J3 have 
included the conjugate transport resulting from conduction 
within finite size plate while analyzing the heat transport from 
a continuous moving plate. In case of continuous extrusion of 
the polymer from a die, the thin polymer sheet or filament 
constitute a continuous moving solid with a nonuniform surface 
velocity and temperature. ~4 Soundalgekar and Murty ~s used 
power law surface temperature to investigate steady-state heat 
transfer from a continuous moving surface. Jeng et al. 1~ further 
considered orbitrary surface velocity and nonuniform surface 
temperature for this problem. 

As the analysis of the boundary layer near continuously 
moving surface is similar for the cases of heat transfer and mass 
transfer, the results obtained for heat transfer characteristics 
can be used in case of mass transfer by replacing the Prandtl 
and Nusselt numbers respectively by Schmidt and Sherwood 
numbers. Chin 17 presented an asymptotic solution valid for 
large Schmidt numbers for mass transfer to a continuously 

Address reprint requests to Dr. Revankar at the Department of 
Nuclear Engineering, Purdue University, West Lafayette, IN 47907, 
USA. 
Received 13 September 1988; accepted 16 June 1989 

© 1989 Butterworth Publishers 

moving plate under laminar conditions. Gorla has studied the 
transient mass transfer to a continuous moving plate with step 
change in surface concentration Is and with step change in 
surface mass flux 19 using similarity transformation. These 
results can be used for heat transfer case with uniform wall 
temperature and uniform heat flux condition. 

As this proble m is of interest to both heat transfer and mass 
transfer cases, the present note considers transient heat transfer 
from continuous moving plate with step change in variable wall 
temperature. The variation in wall temperature considered is 
Tw-7"= =Ax", where A is constant. For such a power law 
variation on wall temperature or mass concentration, the 
similarity formulation holds good. 19"2° The results arc presented 
for a range of Prandtl number from 0.01 to 1000 and n>0.  In 
the formulation it is assumed that the plate thickness is 
negligibly small compared with its length, hence the conduction 
within the body of the plate is neglected. In the case of 
the plate being heated from the ambient fluid, the surface 
temperature can be well represented by the power law variation 
from the leading edge, assuming constant surface heat transfer 
coefficient. The present results are also useful for the case of 
mass transfer to the plate such as in electroplating, t7 Flows 
with large Prandtl number may result in chemical processing 
of hydrocarbons and silicone polymers. 21 Also, large Schmidt 
number is encountered in mass transfer case. Hence, asymptotic 
steady state solutions at large Prandtl number are also presented. 

T r a n s i e n t  s o l u t i o n  

The momentum and energy equations governing the heat 
transfer from a continuously moving plate whose variable 
surface temperature undergoes step change with time are 
similar to those equations given by Gorla 19 in case of transient 
mass transfer to a continuous moving sheet electrode. These 
equations in nondimensional form after similarity transformation 
arc  given as 

f "  + f f " = o  (1) 
2 

P . . . . .  ~0 ~20 Prf~O . . . .  
r~, - j  ~ ~=~+T__ F~ -n r~"  (2) 

The initial condition is 0(~, 0)= 0 and the boundary conditions 
are f(O)=O, i f(O)= 1, f ' (oo )=0 ,  0(0, z)= l(x) and 0(oo, z)---0. 
Here the prime denotes the differentiation with respect to r/. 
The solutions for the velocity profiles are known. 4 The energy 
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Notation 

f(~) 
h 
k 
n 

Nu 
Pr 
Re 
t 

T 
U 

V 

X 

y 

Nondimensional stream function 
Local heat transfer coefficient 
Thermal conductivity 
Surface temperature variation parameter 
Nusselt number, hx/k 
Prandtl number, v/~ 
Local Reynolds number, u,~x/v 
Time 
Temperature 
Velocity component in x direction 
Velocity component in y direction 
Coordinate along the moving surface 
Coordinate normal to the surface 

Greek letters 

t? 
0 
0, 
V 

Thermal diffusivity 
Beta function 
Nondimensional stretched coordinate, Pr~/2r/ 
Nondimensional coordinate, yuw/vx ~/z 
Nondimensional temperature, (T-- T=)/(Tw- T=) 
Functions of ~ (n=O, 1, 2) 
Kinematic viscosity 
Nondimensional time, uwt/x 

Subscripts 
0, 1, 2 Zero, first, second order solutions defined in 

Equation 3 
s Steady-state 
w Condition at the wall 
oo Conditions at very large distances away from the 

wall 

equation (Equation 2) was solved using Crank-Nicholson type 
implicit finite difference scheme. 22 The present solution at n =0, 
which corresponds to uniform wall temperature, agreed with 
those obtained by Gorla is in case of mass transfer. The growth 
of the thermal boundary layer with time are shown in Figures 
1-4 for Prandtl numbers 0.01, 0.7, 7 and 1000 respectively. 
From these figures we observe that the temperature profiles 
monotonically increase to their steady-state shape. With increase 
in time, the thermal boundary layer thickness decreases with 
increase in n. At the start of the transient the effect of wall 
temperature variation on the thermal boundary is small, 
especially for small Prandtl number, and with increase in time 
the effect is more predominant. Of practical interest, the steady- 
state heat transfer rates are given in Table 1 in terms of 
Nu/RC/2 = -0'(0,  oo). In Figure 5, the ratio of the instantaneous 
to steady-state values of heat transfer rates are shown for Pr 
0.01, 0.7, 7 and 1000 for different n values. We observe that 
the heat transfer rate at the surface approaches the steady-state 
condition asymptotically. The steady-state is reached at early 
times with increase in the value of n. The time to reach 
steady-state increases with increase in Prandtl number. 

Figure 1 
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Figure 5 Ratio of instantaneous to steady state heat transfer rates 

Steady-state solution at large Prandtl number 

For short periods of time after the onset of process for which 
the thermal field has not been established, the transient solution 
presented above describes the thermal boundary development 
and rate of heat transfer. However, at longer times the process 
reaches steady-state. For steady-state, the momentum equation, 
energy equation and the boundary conditions are essentially 
the same as in the transient case except the left hand side of 
Equation 2 is 0. For large Prandtl number fluids, the heat 
transfer takes place within a very thin boundary layer that lies 
well within the hydrodynamic boundary layer and the thickness 
of the thermal boundary layer is proportional to Pr- 1/4.23 Here 
we express the 0 by an asymptotic series in descending powers 
of Pr 
0 = 0 o + 01Pr- 1/2 + 02Pr- 1 + OaPr- a/2 + . . .  (3) 

In Equation 3 00, 01, and 02 are called zero, first, and second 
order solutions, respectively. Using an expression for stream 
function 17 which best fits the solution of the momentum 
equation 

f =  1.6160511 - e -  ~(1 + 0.381207~/+ 0.018501972 + 0.0054350r/a)] 

(4) 
and the expression for 0 given by Equation 3, the following set 
of equations is obtained from steady-state energy equation 

for large Prandtl number for solution up to second order in 0 

d20o 
~-0.5~ ?-nOo =0 (5) 

dC 2 

d2Old( 20.110937(2~+0.5(~+0.443748n(Oo--nOt=O . (6) 

d20--1~2-- 0.110937(2 d01 +0.5( dO2+o.443748n~Ox -nO 2 = 0  (7) 
d( 2 d( d( 

where stretched coordinate ( =  Prl/2rl. Equations 5-7 are solved 
together with boundary conditions: at ( = 0 ,  0o = 1, 01 =02 =0,  
and as ( ~  oo, 0o =01 =02 =0,  using Runge--Kutta numerical 
integration method. Solution of the temperature profiles was 
in total agreement when compared with solution obtained from 
transient case at z=oo  for Pr= 1000 (Figure 3). The heat 
transfer rate in terms of Nusselt number can be calculated from 
equation 

Nu=-(RePr)I/2 L[dO°(O) d~ pr-1/2 +dO2(O)d~ Pr-l] (8) 

where the values of 

dOo(O) d01(O) d02(O) 
and 

dC ' dC dC 

are given in Table 2. An approximate integral analysis with 

Table I Values of -e;(O) 

n=Pr  0 1 2 
(c) 

0 .01  0.011384 0.008134 0.029770 0.048279 
0.1 0.073875 0.073003 0.199627 0.306778 
0.7 0.35107 0,35015 0.80244 1.1 2149 

(d) 0.3508 0.8028 1.1 211 
1 0.44357 0.44474 0.99250 1.37223 

(a) 0.44467 0.98829 1.44262 
(b) 0.53033 1.06064 1.41 418 

7 1.38879 2.86395 4.00511 
(a) 1,39000 2.86301 4.06852 
(b) 1,4031 2 2.80624 3.74072 
10 1.68092 1.68063 3.44852 4.63916 
(d) 1.68080 3,45150 4.64310 
(a) 1.68308 3.44719 4,88843 
(b) 1,67702 3.35038 4,47205 

100 5.54563 5.54471 11.17599 15.51914 
(a) 5.54671 11.1 6613 15,72236 
(b) 5.30319 10.60838 14.14186 

1000 17.79246 17,74612 35.53483 49.77494 
(s) 17.77482 35.53596 49.96251 
(b) 16,77019 33.54038 44.72050 

(a) asymptotic steady-state solution 
(b) approximate integral solution 
(c) Raf. 18 
(d) Raf. 15 

Table 2 

n= 0 1 2 

dO°(O) -0 .564192 - 1.127165 - 1.583412 
dC 

~,(0) 
0.092507 0.107222 0.108635 

d~ 
de=(0) 

0.027003 0.031648 0.032161 
dC 
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superposition technique using Duhamel's theorem (for method 
see e.g., Ref. 24) was carried out, assuming third degree 
polynomials in velocity and temperature profiles. At large 
Prandtl number for which the assumption that the thermal 
boundary layer thickness is very small compared with momen- 
tum boundary layer thickness is valid, an approximate solution 
for Nusselt number was obtained as 

Nu=O.53033(RePr) 1/2 for n = 0  (9a) 

Nu=0.53033(RePr)l/2nfl(n, 1/2) for n > 0  (9b) 

where fl is a beta function and the values of which are available 
from mathematical tables. 25 The Nusselt numbers calculated 
with Equations 9a,b and the asymptotic solution are compared 
with the numerical results in Table 1. Assuming the numerical 
solution as exact solution, the error in prediction of Nusselt 
number using approximate integral solution for P r =  1000 at 
n =2  is 10.15%, and at P r =  1 and n =0  the error is 19.5%. The 
Nusselt number calculated with asymptotic solution shows an 
error of 5.1% at Pr = 1 and n = 2. The errors shown here identify 
maximum errors for the range of parameters studied. Hence, 
the prediction of heat transfer rates can be said to be valid for 
the range of Prandtl number from 1 to 1000, with errors less 
than 20% and 6% respectively from approximate integral 
solution and asymptotic solution. The prediction of Nusselt 
number from the asymptotic steady-state solution is valid for 
Prandtl number 7 to oo, with error less than 2%. Though 
the prediction of heat/mass transfer rates from approximate 
integral solution has large error (20%), it is still useful analytical 
expression in estimation of heat/mass transfer to a continuously 
moving plate whose surface temperature/concentration can be 
represented by power law variation with distance. 
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